Frequency-dependent regulation of afferent transmission in the feeding circuitry of Aplysia.
نویسندگان
چکیده
During rhythmic behaviors, sensori-motor transmission is often regulated so that there are phasic changes in afferent input to follower neurons. We study this type of regulation in the feeding circuit of Aplysia. We characterize effects of the B4/5 interneurons on transmission from the mechanoafferent B21 to the radula closer motor neuron B8. In quiescent preparations, B4/5-induced postsynaptic potentials (PSPs) can block spike propagation in the lateral process of B21 and inhibit afferent transmission. B4/5 are, however, active during the retraction phase of motor programs, i.e., when mechanoafferent transmission to B8 presumably occurs. To determine whether mechanoafferent transmission is necessarily inhibited when B4/5 are active, we characterize the B4/5 firing frequency during retraction and show that, for the most part, it is low (below 15 Hz). There is, therefore, a low probability that spike propagation will be inhibited. The relative ineffectiveness of low frequency activity is not simply a consequence of insufficient PSP magnitude, because a single PSP can block spike propagation. Instead, it is related to the fact that PSPs have a short duration. When B4/5 fire at a low frequency, there is therefore a low probability that afferent transmission in the lateral process of B21 can be inhibited. In conclusion, we demonstrate that afferent transmission will not always be affected when a neuron that exerts inhibitory effects is active. Although a cell may be ineffective when it fires at a low frequency, ineffectiveness is not necessarily a consequence of spike frequency per se. Instead it may be due to spike timing.
منابع مشابه
Regulation of afferent transmission in the feeding circuitry of Aplysia.
Although feeding in Aplysia is mediated by a central pattern generator (CPG), the activity of this CPG is modified by afferent input. To determine how afferent activity produces the widespread changes in motor programs that are necessary if behavior is to be modified, we have studied two classes of feeding sensory neurons. We have shown that afferent-induced changes in activity are widespread b...
متن کاملInhibition of afferent transmission in the feeding circuitry of aplysia: persistence can be as important as size.
We are studying afferent transmission from a mechanoafferent, B21, to a follower, B8. During motor programs, afferent transmission is regulated so that it does not always occur. Afferent transmission is eliminated when spike propagation in B21 fails, i.e., when spike initiation is inhibited in one output region-B21's lateral process. Spike initiation in the lateral process is inhibited by the B...
متن کاملAfferent-induced changes in rhythmic motor programs in the feeding circuitry of aplysia.
A manipulation often used to determine whether a neuron plays a role in the generation of a motor program involves injecting current into the cell during rhythmic activity to determine whether activity is modified. We perform this type of manipulation to study the impact of afferent activity on feeding-like motor programs in Aplysia. We trigger biting-like programs and manipulate sensory neuron...
متن کاملRegulation of spike initiation and propagation in an Aplysia sensory neuron: gating-in via central depolarization.
Afferent transmission can be regulated (or gated) so that responses to peripheral stimuli are adjusted to make them appropriate for the ongoing phase of a motor program. Here, we characterize a gating mechanism that involves regulation of spike propagation in Aplysia mechanoafferent B21. B21 is striking in that afferent transmission to the motor neuron B8 does not occur when B21 is at resting m...
متن کاملEffect of presynaptic membrane potential on electrical vs. chemical synaptic transmission.
The growing realization that electrical coupling is present in the mammalian brain has sparked renewed interest in determining its functional significance and contrasting it with chemical transmission. One question of interest is whether the two types of transmission can be selectively regulated, e.g., if a cell makes both types of connections can electrical transmission occur in the absence of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 90 6 شماره
صفحات -
تاریخ انتشار 2003